
IJSRSET152282 | Received: 25 March 2015 | Accepted: 30 March 2015 | March-April 2015 [(1)2: 284-288]

© 2015 IJSRSET | Volume 1 | Issue 2 | Print ISSN : 2395-1990 | Online ISSN : 2394-4099
Themed Section: Engineering and Technology

284

Building a Scalable System for Stealthy P2P-Botnet Detection
B. Anitha, Avinash Sivan, V. Hari Prasath, S. Selvaraj

Computer Science and Engineering, Dhanalakshmi College of Engineering, Chennai, Tamilnadu, India

ABSTRACT

In this paper we discussed about Peer-to-peer (P2P) because botnets have recently been taken by botmasters for

their attack against take-down efforts. Inside being harder to take down, modern bot nets tend to be attack in the

way they perform malicious activities, making current detection approaches ineffective. In addition, the rapidly

growing volume of network traffic calls for high measurable of detection systems. We propose a new measurable

botnet detection system capable of detecting attack P2P botnets. ABOTNET is a collection of compromised hosts

that are remotely controlled by an attacker (the botmaster) through a command and control (C&C) channel.

Botnets serve as the infrastructures responsible for a variety of cyber-crimes, such as spamming, distributed denial

of-service (DDoS) attacks, identity theft, click fraud, etc. The C&C channel is an essential component of a botnet

because botmasters rely on the C&C channel to issue commands to their bots and receive information from the

compromised machines. Botnets may structure their C&C channels in different ways.

Keywords: Botnet Detection, Software Architecture, Signature Based Etection, Data Mining, Click Fraud,

Search Log Analysis

I. INTRODUCTION

Recent malicious attempts are intended to get financial

benefits through a large pool of compromised hosts,

which are called software robots or simply ―bots.‖ A

group of bots, referred to as a botnet, is remotely

controllable by a server and can be used for sending

spam mails, stealing personal information, and

launching DDoS attacks. Growing popularity of botnets

compels to find proper countermeasures but existing

defense mechanisms hardly catch up with the speed of

botnet technologies. [1] In this paper, we propose a

botnet detection mechanism by monitoring DNS traffic

to detect botnets, which form a group activity in DNS

queries simultaneously sent by distributed bots. A few

works have been proposed based on particular DNS

information generated by a botnet, but they are easily

evaded by changing. ABOTNET is a collection of

compromised hosts that are remotely controlled by an

attacker (the botmaster) through a command and control

(C&C) channel. Botnets serve as the infrastructures

responsible for a variety of cyber-crimes, such as

spamming, distributed denialof-service (DDoS) attacks,

identity theft, click fraud, etc. The C&C channel is an

essential component of a botnet because botmasters rely

on the C&C channel to issue commands to their bots and

receive information from the compromised machines.

Botnets may structure their C&C channels in different

ways.

Figure 1: The System

International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com)

285

II. METHODS AND MATERIAL

A. User Interface Design

In this module we design the windows for the project.

These windows are used to send a message from one

peer to another. We use the Swing package available in

Java to design the User Interface. Swing is a widget

toolkit for Java.[2][3] It is part of Sun Microsystems'

Java Foundation Classes (JFC) — an API for providing

a graphical user interface (GUI) for Java programs

System Overview: A P2P botnet relies on a P2P protocol

to establish a C&C channel and communicate with the

botmaster. Therefore P2P bots exhibit some network

traffic patterns that are common to other P2P client

applications (either legitimate or malicious). Thus, we

divide our systems into two phases. In the first phase, we

aim at detecting all hosts within the monitored network

that engage in P2P communications. As shown in Figure

1, we analyze raw traffic collected at the edge of the

monitored network and apply a pre-filtering step to

discard network flows that are unlikely to be generated

by P2P applications. We then analyze the remaining

traffic and extract a number of statistical features to

identify flows generated by P2P clients. [4] In the

second phase, our system analyzes the traffic generated

by the P2P clients and classifies them into either

legitimate P2P clients or P2P bots. Specifically, we

investigate the active time of a P2P client and identify it

as a candidate P2P bot if it is persistently active on the

underlying host. We further analyze the overlap of peers

contacted by two candidate P2P bots to finalize

detection.

Identifying P2P Clients

 Traffic Filter the Traffic Filter component aims at

filtering out network traffic that is unlikely to be related

to P2P communications. This is accomplished by

passively analyzing DNS traffic, and identifying

network flows whose destination IP addresses were

previously resolved in DNS responses.[7] Specifically,

we leverage the following feature: P2P clients usually

contact their peers directly by looking up IPs from a

routing table for the overlay network, rather than

resolving a domain name. This feature is supported by

Table II (No-DNS Peers), which illustrates that the vast

majority of flows gener- ated by P2P applications do not

have destination IPs resolved from domain names. The

remaining small fraction of flows are corresponding to a

possible exception that a peer bootstraps into a P2P

network by looking up domain names that resolve to

stable super-nodes) Since most non-P2P applications

(e.g., browsers, email clients, etc.) often connect to a

destination address resulting from domain name

resolution, this simple filter can eliminate a very large

percentage of non-P2P traffic, while retaining the vast

majority of P2P communications.

Fine-Grained Detection of P2P Clients

This component is responsible for detecting P2P clients

by analyzing the remaining network flows after the

Traffic Filter component. For each host h within the

monitored network we identify two flow sets, denoted as

Stcp(h) and Sudp(h), which contain the flows related to

successful outgoing TCP and UDP connection,

respectively. We consider as successful those TCP

connections with a completed SYN, SYN/ACK, ACK

handshake, and those UDP (virtual) connections for

which there was at least one ―request‖ packet and a

consequent response packet.

Coarse-Grained Detection of P2P Bots

Since bots are malicious programs used to perform

profitable malicious activities, they represent valuable

assets for the botmaster, who will intuitively try to

maximize utilization of bots. This is particularly true for

P2P bots because in order to have a functional overlay

network (the botnet), a sufficient number of peers needs

to be always online. In other words, the active time of a

bot should be comparable with the active time of the

underlying compromised system. If this was not the

case, the botnet overlay network would risk

degenerating into a number of disconnected sub

networks due to the short life time of each single node.

In contrast, the active time of legitimate P2P

applications is determined by users, which is likely to be

transient.[6] For example, some users tend to use their

file- sharing P2P clients only to download a limited

number of files before shutting down the P2P application

[20]. In this case, the active time of the legitimate P2P

application may be much shorter compared to the active

time of the underlying system. It is worth noting that

some users may run certain legitimate P2P applications

for as long as their machine is on.[8] For example,

Skype is a popular P2P application for instant messaging

International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com)

286

and voice-over-IP (VoIP) that is often setup to start after

system boot, and that keeps running until the system is

turned off. Therefore, such Skype clients (or other

―persistent‖ P2P clients) will not be filtered out at this

stage. Hence, the first component in the ―Phase II‖ of

our system (―Coarse-Grained Detection of P2P Bots‖)

aims at identifying P2P clients that are active for a time

TP2P close to the active time Tsys of the underlying

system they are running on.

While this behavior is not unique to P2P bots and may

be representative of other P2P applications (e.g., Skype

clients that run for as long as a machine is on),

identifying persistent P2P clients takes us one step closer

to identifying P2P bots. To estimate Tsys we proceed as

follows. For each host h ∈ H that we identified as P2P

clients according to Section IV-B, we consider the

timestamp tstart(h) of the first network flow we observed

from h and the timestamp tend(h) related to the last flow

we have seen from h. Afterwards, we divide the time

tend(h)−tstart(h) into w epochs (e.g., of one hour each),

denoted as T =[t1,...ti,...,tw]. We further compute a

vector A(h,T) =[a1,...ai,...,aw] where ai is equal to 1 if h

generated any network traffic between ti−1 and ti. We

then estimate the active time of h as Tsys = w i=1 ai. In

order to estimate the active time of a P2P application,

we can leverage obtained fingerprint clusters. It is

because that a P2P application periodically exchanges

network con- trol (e.g., ping/pong) messages with other

peers as long as the P2P application is active. For each

host h (again, we consider only the hosts in H, which we

previously identi- fied as P2P clients), we examine the

set of its fingerprint clusters FC(h) ={FC1,...FCj ...,FCk}

(see Section III).[7] Based on the flows belonging to a

fingerprint cluster FCj, we use the same approach of

computing Tsys to calcu- late its active time, denoted as

T(FCj). Then, we estimate the active time (TP2P) of a

P2P application as ˆ TP2P =max

(T(FC1),...T(FCj),...T(FCk)).

B. De-Activate Traffic

The Traffic Filter component aims at filtering out

network traffic that is unlikely to be related to P2P flows

whose destination IP addresses were previously resolved

in DNS responses. Specifically, we leverage the

following feature: P2P clients usually contact their peers

directly by looking up IPs from a routing table for the

overlay network, rather than resolving a Domain name.

C. Coarse Grained Peer-To-Peer Detection

This component is responsible for detecting P2P clients

by analyzing the remaining network flows after the

Traffic Filter component. For each host h within the

monitored network we identify two flow sets, denoted as

Stcp (h) and Sudp (h), which contain the flows related to

successful outgoing TCP and UDP connection,

respectively. [5] We consider as successful those TCP

connections with a completed SYN, SYN/ACK, ACK

handshake, and those UDP (virtual) connections for

which there was at least one ―request‖ packet and a

consequent response packet.

D. Coarse Grained Bot Detection

Since bots are malicious programs used to perform

profitable malicious activities, they represent valuable

assets for the botmaster, who will intuitively try to

maximize utilization of bots. This is particularly true for

P2P bots because in order to have a functional overlay

network (the botnet), a sufficient number of peers needs

to be always online. In other words, the active time of a

bot should be comparable with the active time of the

underlying compromised system.

E. Clustering And Eliminating

The distance between two flows is subsequently defined

as the euclidean distance of their two corresponding

vectors. We then apply a clustering algorithm to

partition the set of flows into a number of clusters. Each

of the obtained clusters of flows, Cj (h), represents a

group of flows with similar size. For each Cj (h), we

consider the set of destination IP addresses related to the

flows in the clusters, and for each of these IPs we

consider its BGP prefix (using BGP prefix

announcements).

III. RESULTS AND DISCUSSION

The implementation objective is to integrate high scal-

ability as a built-in feature into our system. To this end,

we first identify the performance bottleneck of our sys-

tem and then mitigate it using complexity reduction and

parallelization.

International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com)

287

A. Performance Bottleneck

Out of four components in our system, ―Traffic Filter‖

and ―Coarse-Grained Detection of P2P Bots‖ have linear

complexity since they need to scan flows only once to

identify flows with destination addresses resolved from

DNS queries or calculate the active time. Other two

components, ―Fine-Grained Detection of P2P Clients‖

and ―Fine-Grained P2P Detection of P2P Bots‖, require

pairwise comparison for distance calculation.

Specifically, if we denote the number of flows generated

by a host as n and the number of hosts as S, the time

complexity of Fine-Grained Detection of P2P Clients

approximates O(S∗n2). Comparably, if we denote the

number of persistent P2P clients as l, the time

complexity of Fine- Grained P2P Bot Detection

approximates O(l2). Since the number of flows

generated by network applications (i.e., n) could be

enormous (e.g., more than hundreds of thousands of

flows are generated by a single P2P client in our

experiments), the computation overhead of Fine-Grained

Detection of P2P Clients may become prohibitive. On

contrary, the precent age of P2P clients in the ISP

network is relatively small (e.g., 3%-13% as reported in

[22]). Consequently, Fine- Grained P2P Bot Detection is

unlikely to introduce huge performance overhead. For

instance, given a typical ISP net- work or a large

enterprise network that has 65,536 hosts (/16 subnet), if

we assume that 8% hosts run P2P applications and

conservatively assume that half of them are persistent,

the number of persistent P2P clients (i.e., l) subject to

analysis by Fine-Grained P2P Bot Detection is 2,221,

incurring negligible overhead. To summarize, ―Fine-

Grained P2P Client Detection‖ is the performance

bottleneck.

B. Two-Step Flow Clustering

We use a two-step clustering approach to reduce the

time complexity of ―Fine-Grained P2P Client Detection‖.

For the first-step clustering, we use an efficient

clustering algorithm to aggregate network flows into K

sub-clusters, and each sub- cluster contains flows that

are very similar to each other. For the second-step

clustering, [10] we investigate the global distribution of

sub-clusters and further group similar sub-clusters into

clusters.

C. System Parallelization

Since the two-step clustering analyses network flows for

each single host, we can parallelize the computation for

all hosts.[9] We formulate the problem as follows: given

S hosts denoted as H ={ h1,h2,...hS} and M computation

nodes denoted as C ={ c1,c2,...cM}, we partition H into

Mexclusive subsets HT 1, HT 2..HTM and assign HT i

to ci for analysis, whose processing time is denoted as

exc(ci, HT i). Our target is to design a partition

algorithm so that the overall processing time, denoted as

T = max(exc(ci, HT i)), is minimized. If we assume each

computation node has the same capacity, T will be

minimized when the analysis workload is evenly

distributed across all computation nodes.

IV. CONCLUSION

We conducted a systematic study on the feasibility of

solely using DNS queries for massive-scale stealthy

communications among entities on the Internet. Our

work shows that DNS—in particular the code word

mode combined with advanced querying strategies—can

be used as an extremely effective stealthy C&C channel.

To address the open problem raised in on how to

algorithmically generate short-lived and realistic-looking

domain names, we found that using MC produces

realistic-looking domain names. Our work points out the

potential severity of DNS abuse for massive-scale

communications and the challenges associated with its

detection. Understanding the capacity of botnets

communication power helps identify and eliminate

nefarious attacks launched from them. DNS based botnet

C&C is stealthier than application based C&C (e.g., e-

mail or social network, and such a C&C system also

benefits from the decentralization of DNS. Some of our

International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com)

288

anomaly detection analysis is useful beyond the specific

DNS tunnelling problem studied.

V. REFERENCES

[1] S. Stover, D. Dittrich, J. Hernandez, and S. Dietrich, ―Analysis

of the storm and nugache trojans: P2P is here,‖ in Proc.

USENIX, vol. 32. 2007, pp. 18–27.

[2] P. Porras, H. Saidi, and V. Yegneswaran, ―A multi-perspective

analysis of the storm (peacomm) worm,‖ Comput. Sci. Lab.,

SRI Int., Menlo Park, CA, USA, Tech. Rep., 2007. P. Porras,

H. Saidi, and V. Yegneswaran. (2009). Conficker C Analysis

[Online]. Available:

http://mtc.sri.com/Conficker/addendumC/index.html

[3] G. Sinclair, C. Nunnery, and B. B. Kang, ―The waledac

protocol: The how and why,‖ in Proc. 4th Int. Conf. Malicious

Unwanted Softw., Oct. 2009, pp. 69–77.

[4] R. Lemos. (2006). Bot Software Looks to Improve Peerage

[Online]. Available: http://www.securityfocus.com/news/11390

[5] Y. Zhao, Y. Xie, F. Yu, Q. Ke, and Y. Yu, ―Botgraph: Large

scale spamming botnet detection,‖ in Proc. 6th USENIX NSDI,

2009, pp. 1–14.

[6] G. Gu, R. Perdisci, J. Zhang, and W. Lee, ―Botminer: Clustering

analysis of network traffic for protocol- and structure-

independent botnet detection,‖ in Proc. USENIX Security, 2008,

pp. 139–154.

[7] T.-F. Yen and M. K. Reiter, ―Are your hosts trading or plotting?

Telling P2P file-sharing and bots apart,‖ in Proc. ICDCS, Jun.

2010, pp. 241–252.

[8] S. Nagaraja, P. Mittal, C.-Y. Hong, M. Caesar, and N. Borisov,

―BotGrep: Finding P2P bots with structured graph analysis,‖ in

Proc. USENIX Security, 2010, pp. 1–16.

[9] J. Zhang, X. Luo, R. Perdisci, G. Gu, W. Lee, and N. Feamster,

―Boosting the scalability of botnet detection using adaptive

traffic sampling,‖ in Proc. 6th ACM Symp. Inf., Comput.

Commun. Security.

